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ABSTRACT
Aggregation queries on data streams are evaluated over
evolving and often overlapping logical views called windows.
While the aggregation of periodic windows were extensively
studied in the past through the use of aggregate sharing
techniques such as Panes and Pairs, little to no work has
been put in optimizing the aggregation of very common,
non-periodic windows. Typical examples of non-periodic
windows are punctuations and sessions which can imple-
ment complex business logic and are often expressed as user-
defined operators on platforms such as Google Dataflow or
Apache Storm. The aggregation of such non-periodic or
user-defined windows either falls back to expensive, best-
effort aggregate sharing methods, or is not optimized at all.

In this paper we present a technique to perform efficient
aggregate sharing for data stream windows, which are de-
clared as user-defined functions (UDFs) and can contain
arbitrary business logic. To this end, we first introduce
the concept of User-Defined Windows (UDWs), a simple,
UDF-based programming abstraction that allows users to
programmatically define custom windows. We then define
semantics for UDWs, based on which we design Cutty, a low-
cost aggregate sharing technique. Cutty improves and out-
performs the state of the art for aggregate sharing on single
and multiple queries. Moreover, it enables aggregate sharing
for a broad class of non-periodic UDWs. We implemented
our techniques on Apache Flink, an open source stream pro-
cessing system, and performed experiments demonstrating
orders of magnitude of reduction in aggregation costs com-
pared to the state of the art.

1. INTRODUCTION
Data stream analytics are becoming increasingly impor-

tant for a variety of use cases in the industry and science,
powering dashboards with continuous insights, approximate
computations and complex stateful applications. Queries on
unbounded data are typically evaluated over finite logical
views of incoming streams, called windows.
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Windows are a first class citizen of virtually all stream
processing systems [1, 4]. Those systems typically support
a set of simple, predefined primitives to construct time- and
count-based windows of various forms (e.g., sliding, tum-
bling, hopping). This set of primitives can serve a wide
variety of use cases, however, it is too restricted to sup-
port more advanced ones such as dynamic, data-driven win-
dows. In contrast, modern UDF-heavy streaming systems
do not provide any windowing primitives [2, 20], and force
their users to define discretization as user-defined operators
where they can encode very complex business logic. The
main challenge that comes with arbitrary user-defined oper-
ators, is that they hide their semantics from the system and
hinder optimization opportunities for efficient execution.

Aggregation queries over sliding windows are one of the
most redundancy-prone operations in stream processing, as
multiple aggregations often share underlying data (i.e., the
slide) and thus computations. Seminal works in the past
focused on reducing redundancy in computing aggregates
on overlapping periodic and statically defined windows [16,
17, 18]. These techniques, however, do not apply to broad
classes of windows which include punctuations [10], snap-
shots [11], sessions [3], etc. The main reason that the
existing aggregate sharing techniques fall short in aggre-
gating non-periodic windows is the lack of clear seman-
tics, as well as the user-defined code in their implementa-
tion. As a result, aggregation of non-periodic windows relies
on semantics-agnostic, best-effort general aggregation tech-
niques [5, 22] at very high memory and computational costs.

The objective of this work is twofold: first we aim at giving
full flexibility to users by allowing them to implement user-
defined stream discretizations. Second, since user-defined
discretizations hide their semantics and hinder optimization,
we aim at analyzing and exposing the primitives needed to
optimize and efficiently execute window aggregations.

To this end, we propose a programming model which en-
ables expressing windows through UDFs and introduce the
concept of User-Defined Windows (UDWs). We then exploit
certain underlying properties of UDWs and devise a novel
aggregate sharing technique that is applicable, not only to
known periodic window classes, but to a broader class of
windows with less space and computational costs compared
to the state of the art. We implemented support for UDWs,
their semantics, as well as our aggregate sharing technique
on Apache Flink [8], a distributed dataflow processing sys-
tem as a complete framework for streaming aggregations.

Contributions. The contributions of this paper are sum-
marized as follows:

1201

http://dx.doi.org/10.1145/2983323.2983807


Slices

Higher
order

partials

price
[in USD]

time
[in min.]

0

0

5 10 15 20 25 31 35

10

Window
Window Begin
Threshold
Pre-Aggregate

1Figure 1: A dynamic window example: Reports become
more frequent when the value of a stock is below 10$.

• We introduce the concept of user-defined windows, a
programming model that allows users to define cus-
tom discretizations, allowing windows beyond simple
periodic time- and count-based.

• We identify and define the semantics of a restricted but
very broad family of user-defined windows which we
term deterministic, over which window aggregates can
be computed efficiently. Deterministic UDWs subsume
the periodic ones.

• We introduce Cutty, a general aggregation framework
for UDWs that combines discretization with aggrega-
tion to enable efficient aggregate sharing across multi-
ple queries.

• We provide analytical and experimental results show-
ing that our aggregate sharing technique, exhibits
speedups of orders of magnitude for deterministic
UDWs, compared to the state of the art.

A Motivating Example. Consider a monitoring applica-
tion for stock quotes that continuously receives records rep-
resenting stock trades. Each record contains a volume (how
many units where traded) and a price, per traded unit. A
stock trader wants to see the volume-weighted average price
of a stock over the last 10 minutes, reported every 5 min-
utes. However, when the stock’s price falls below a certain
threshold (e.g., the trader can buy the stock in a low price),
the trader wants to receive an update every 2 minutes, with
a weighted price average of the last 5 minutes. An exam-
ple of such a monitoring dashboard is depicted in Figure 1.
As specified by the trader, when the price falls below $10
on the 25th minute, the slide becomes more frequent (every
2min) and the window range becomes shorter (5min). More
formally, the window definition goes as follows:

window =

{
SLIDE=5min; RANGE=10min if price > $10

SLIDE=2min; RANGE=5min if price ≤ $10

This is a simple example of a data-driven, user-defined win-
dow (UDW) that dynamically changes its range and slide
according to the incoming stream. The semantics of such
windows have not been defined or supported by systems
in the past. The main idea behind the aggregate sharing
technique presented in this paper is that neither discretiza-
tion nor aggregation need to understand the semantics of a
UDW. Instead, each UDW needs to simply specify, for each
record in the stream, whether that record marks the begin

Figure 2: Architectural overview of Cutty.

or the end of a window. The rest of the UDW logic can be
arbitrarily complex. Our aggregator uses this information
to start a new partial aggregate each time a window begins
(dashed vertical lines in the example of Figure 1), result-
ing in a minimal set of non-overlapping partial aggregates,
called slices. The final aggregate for any window is com-
puted using the slices, and possibly higher order aggregates.

Solution Overview. Our aggregator contains three main
components, as depicted in Figure 2:
1) The discretizer enriches the incoming data stream with
windowing information dictated by a set of User-Defined
Window functions which share the same aggregation (e.g.,
SUM, AVG). The enriched stream drives the pre-aggregation
decisions and abstracts necessary window bookkeeping from
the aggregator. 2) The aggregation store which is built
upon [22], maintains and pre-computes higher level partials
allowing efficient aggregate look-ups for arbitrary window
intervals. 3) The aggregator consumes the enriched stream
and implements the core shared aggregation functionality
for all types of UDWs.

The rest of this paper is organized as follows: In Section 2
we present preliminaries that the reader needs in order to fol-
low the rest of the paper. Then, we introduce the semantics
needed for efficient slicing of UDWs in Section 3. Section 4
describes an intuitive end-to-end example of our approach.
We then describe the design and internals of Cutty, our
aggregate sharing technique in Section 5. In Section 6 we
provide an analytical comparison of Cutty contrary to the
state of the art. In Section 7 we present our experimental
results, and discuss the related work in Section 8. Finally,
we conclude and present future work in Section 9.

2. PRELIMINARIES
Before we describe UDWs and our aggregate sharing tech-

nique, it is worthwhile to provide an overview of our data
model and operators on which we base our work. For com-
pleteness of presentation, we then outline the main ideas
behind window aggregate sharing and stream slicing.

2.1 Data Model and Operations
Streams and Substreams. A stream consists of records
derived from a type T . In our model, a data stream s is a
sequence s ∈ Seq(T ) where Seq(T ) is the set of all sequences
that can be derived over T . Furthermore, we denote by
si = s(i) the element at position i in data stream s.

Since a stream is conceptually infinite, we use intervals to
describe finite subsequences out of s. An interval R = [a, b]
is a set of integers from a to b, a ≤ b. s(R) is a subsequence
of s where s(R) = {si|i ∈ R}. In the following, we refer to
s(R) as a substream and use s[a, b] as a shorthand notation
for s([a, b]). We further denote the set of all substreams of
type T as Str(T ), where Str(T ) ⊂ Seq(T ).
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Operators. A Discretize operator transforms a stream
s ∈ Seq(T ) into a sequence w ∈ Seq(Str(T )) of (possi-
bly overlapping) windows, where a window is a substream
wi = s[li, ri]. In the following, we refer to an output se-
quence w as a discretized stream and describe the discretiza-
tion using a function fdisc (further analyzed in Section 3):

Discretize : fdisc × Seq(T )→ Seq(Str(T ))

Windows can overlap. However, they should maintain
a FIFO order. More formally, for a pair of windows
wi, wj ∈ w, if i ≤ j then li ≤ lj and ri ≤ rj .

The Aggregate operator maps each window in the dis-
cretized stream to an aggregate value, given an aggregation
function fa.

Aggregate : (fa : Str(T )→ T ′)× Seq(Str(T ))→ Seq(T ′)

Examples of fa are SUM and AVG. In the following section, we
further analyze window aggregations.

2.2 Window Aggregates
Windows are finite but can be arbitrarily long. Thus, it

is generally preferable to evaluate an aggregation incremen-
tally. In this section we will briefly explain the internals of
incremental and partial aggregation of overlapping windows.

Partial Aggregation. An aggregation fa can be decom-
posed into partial aggregates. We denote by A the type of
partial aggregates. For example, in the case of a SUM ag-
gregation A = R. A window aggregation function can be
reformulated as two functions, lift and lower, and a com-

bine operator ⊕ [23]. The function lift : T → A maps an
element of a window to a partial aggregate. The combine
operator ⊕ : A × A → A combines two partial aggregates
into a new partial aggregate. Finally, lower : A→ T ′ maps
a partial aggregate into an element in the type T ′ of output
values. We assume that combine is associative and that the
partial aggregation values that are combined are bounded
as in most other works [5, 16, 22]. By using the above func-
tions and operator, elements in the window are lifted to
partial aggregates, further combined starting from the de-
fault (identity value) 1A for type A, and finally mapped to
an output aggregate value. For example, for window s[1, 3]
the aggregation would be unrolled as:

fa(s[1, 3]) = lower(((1A⊕lift(s1))⊕lift(s2))⊕lift(s3))

Generally, we denote the partial aggregate of a substream
s[i, j] as P (s[i, j]) = 1A ⊕ lift(si)⊕ . . .⊕ lift(sj).

Aggregating Overlapping Windows. A näıve execu-
tion of an Aggregate operator can potentially lead to re-
dundant partial computations. To demonstrate the prob-
lem assume we have a discretized stream w. For any
two windows w,w′ ∈ w there is potentially an overlap
v = w ∩ w′ = s([l, r] ∩ [l′, r′]). Computing all partials over
w would yield:

P (w) = . . . ∪ P (w) ∪ P (w′) ∪ . . .

= . . . ∪ (P (w \ v)⊕ P (v)) ∪ (P (v)⊕ P (w′ \ v)) ∪ . . .

It is clear from the formulation that if v 6= ∅, the re-
dundant work done would be at least P (v). The same re-
dundancy also applies when executing multiple aggregate
queries on a shared data stream. For example, let w and
w′ be two discretized streams computed over a shared data
stream s. For windows w ∈ w and w′ ∈ w′ with overlap

w ∩ w′ = v and the same aggregation function, the amount
of redundant work to compute P (w ∪ w′) would also be at
least P (v).

2.3 Stream Slicing
We seek to apply partial aggregation on a data stream s

and derive a set of partial aggregates I, which can be used
to compose full window aggregations. This way, instead
of keeping all records of active1 windows in memory, we
only keep their partials. This technique has been studied in
the past in the context of periodic windows and is known
as slicing [16, 17]. Slicing guarantees that for any active
window w = s[begin, end] there will be a sequence of partials
over contiguous intervals from begin to end. For instance,
consider windows s[1, 3] and s[2, 7] for which we want to
apply slicing. We can derive fa(s[1, 3]) and fa(s[2, 7]) from
a set I of three shared sliced partials as follows:

I = 〈

fa(s[1,3])=lower((1A⊕P (s1))⊕P (s[2,3]))︷ ︸︸ ︷
P (s1), P (s[2, 3]), P (s[4, 7])︸ ︷︷ ︸

fa(s[2,4])=lower((1A⊕P (s[2,3]))⊕P (s[4,7]))

〉

3. USER-DEFINED WINDOW SEMANTICS
There have been various approaches to define discretiza-

tion semantics on data streams [4, 7, 18]. In this work,
we aim at exposing the right core primitives that can enable
efficient shared aggregation without limiting window expres-
sivity. We outline the observations that drove the design of
our windowing semantics and then define and characterize
semantics for user-defined windows.

3.1 Problem Definition and Intuition
The objective of this work is to apply efficient aggre-

gate sharing for user-defined windows. Stream slicing al-
lows sharing of partial aggregates with the least memory re-
quirements, since slices are built from non-overlapping sub-
streams. Ideally, a stream can be discretized into a minimal
set of slices, as dictated by the window specification, in or-
der to derive all needed window aggregations. Before we
continue, we answer two fundamental questions:

– What is the smallest set of slices of a stream which suffices
to compute aggregates over a set of windows? Intuitively,
we can start pre-aggregating an active partial slice incre-
mentally as we consume records until we reach a record si
that marks the beginning of a window. At that point we can
store a copy of our active partial and start a new one, which
can be used later for the window that begins at si. When
we reach a record that marks the end of a window we can
combine the current active partial slice, together with pre-
viously stored slices to get the aggregate of the full window.
Thus, at any given point we need to maintain no more slices
than there are active windows.

– Which classes of windows support slicing? We argue that
the semantics of windows do not have to be known in ad-
vance. We base the rest of this paper on the observation that
minimal slicing can be applied by knowing whether a record
marks the beginning of a window or not. In the following
section we use this observation, in order to design semantics
for UDWs.

1Windows are active when they have not yet been emitted.
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Figure 3: Overview of windowing classes.

3.2 User-Defined Discretization
We distinguish two classes of UDWs, namely deterministic

and non-deterministic. In short, deterministic are all win-
dows for which we can apply slicing efficiently as described
previously, while non-deterministic are all the rest for which
we cannot. Deterministic windows can be declared with a
discretization function fdisc.

Intuitively a window function is deterministic if at the
time that it processes a record, it can decide whether that
records marks i) the beginning of a window or ii) the end of
a window. For instance, a periodic count window of fixed
range and slide, is deterministic, since when a record ar-
rives, an internal counter can affirm whether a new window
begins with that record. Similarly, a punctuation window is
deterministic, since (by definition) a punctuation marks the
beginning of a window. Formally, a deterministic window
function fdisc is defined as follows:

fdisc : T → 〈Wbegin : N,Wend : N〉

where for a record r ∈ T : i) Wbegin is the number of windows
beginning with r and ii) Wend the number of windows end-
ing upon processing r. For example, consider the following
deterministic function for declaring periodic count windows
of fixed range and slide:

fdisc(sk) =

{
Wbegin : 1 if k mod slide = 0, else 0

Wend : 1 if((k − range) mod slide) = 0, else 0

Periodic windows are supported by most existing event
processing systems (e.g. CQL [4]), and are trivially sub-
sumed by deterministic. Figure 3 depicts an overview of the
window classes along with a categorization of known win-
dow types found in the literature. Tumbling windows are
periodic and thus, deterministic. Session and snapshot win-
dows by definition begin with the first record of the session
that marks the window’s beginning and end a timeout record
which is injected in the system (e.g., a watermark). More-
over, lower-bound landmark windows begin from a given
landmark record, that marks the beginning of a record and
end upon a punctuation or a predefined length.

Non-Deterministic Windows. Intuitively, non-determini-
stic windows cannot declare immediately whether a record
begins a window or not, i.e., they need to examine more
records in order to take such a decision. As a result, slicing
for non-deterministic windows is not possible and we have to
fall back to best-effort techniques such as [5, 22]. A typical
example of a window which is non-deterministic is a win-
dow which every 5 seconds outputs the last 10 records of
the stream. If we assume that a record r1, arrives during
the first second of a window and the next second, another
10 records arrive, r1 will not be part of the next window.
Thus, if the rate of the stream cannot be known in advance,

such a window cannot be deterministic; the window function
cannot specify whether a record is going to be part of the
next window at the very moment of the record’s arrival. In
this work, we focus on shared aggregation of deterministic
windows, for which slicing is applicable.

Implementing UDWs in Practice. To make it easier for
users to implement discretization functions, we implemented
an API on Apache Flink inspired by IBM SPL [14], allowing
users to implement custom eviction and trigger functions
of arbitrary logic. Intuitively, the triggers are used by the
system to mark the windows’ Wend, and evictions are used to
mark Wbegin (used by deterministic functions) or number of
evicted items e (used by non-deterministic functions). When
the function which users implement cannot return a Wbegin

for all of the records which they process, the system treats
them as non-deterministic.

4. DETAILED OVERVIEW OF CUTTY
In this section we describe a general framework for ag-

gregating multiple overlapping windows. This aggregation
framework exploits the properties of deterministic windows
using Cutty, a novel pre-aggregation technique. Further-
more, it utilizes higher-order pre-aggregated partials which
adds sharing capabilities for deterministic windows.

A Thorough Example. Figure 4 depicts a full exam-
ple of the execution of Cutty for aggregating a set of de-
terministic UDWs. As the set of the deterministic UDWs
dictate (fdisc’s at the top), partial aggregation is applied
incrementally only within the intervals that mark the be-
ginning of windows (dashed vertical lines). At the be-
ginning of every interval, the active partial resets to the
initial value 1A and maintains the current pre-aggregate
until it forms a complete atomic slice (in this example,
(P (s[1, 2]), P (s[3, 5]), P (s[6, 7]), P (s[8, 8])). Before the ac-
tive partial resets, its value is stored for further reuse (central
rectangle in the figure). When a window ends we have ev-
erything to compute the full aggregation from the partials.
For instance, in the case of fA(s[3, 8]), upon getting notified
at the consumption of s9 that window s[3, 8] is complete we
are ready to compute the full aggregation. We can derive the
full window aggregation by re-using all precomputed slices
P (s[3, 5]), P (s[6, 7]) and P (s[8, 8]) which are already stored.

Sharing Higher-Order Partials. From the example in
Figure 4, we observed that, simply sharing sliced partial
aggregates does not eliminate redundancy when computing
full window aggregations. For example, with a typical lazy
evaluation slices P (s[1, 2]) and P (s[3, 5]) would have to be
combined twice: once for computing fa(s[1, 5]) itself, and
once for computing fa(s[1, 6]). Instead, if fa(s[1, 5]) was
stored, fa(s[1, 6]) could be computed by fa(s[1, 5]) together
with the current partial. In principle, the higher the num-
ber of overlapping windows, the more reduce calls are re-
peated for each window merging operation. To deal with
this issue we can exploit an eager pre-aggregation strategy
to incrementally pre-compute higher-level aggregates. Eager
pre-aggregation has been used previously to support aggre-
gate look-ups on data streams (e.g. B-Int[5], FlatFAT [22])
at the cost of additional space and update computation re-
quirements. It has been shown, however, that these costs
provide a strong trade-off when eager aggregation is applied
even in a per-record granularity of a data stream [5, 22].

In our case, we apply this technique for enriching atomic
sliced partials with higher order reusable partials, thus, effec-
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Figure 4: An example of Cutty on deterministic windows.

tively reducing aggregation cost at a low additional memory
footprint. Furthermore, eager aggregation can be used as
a best-effort fallback solution for non-deterministic UDWs,
where slicing cannot be applied. The key idea is that we
can eagerly evaluate higher-order aggregates and maintain
them in efficient data structures in order to support arbi-
trary look-ups, described in more detail in the next section.

5. SHARED AGGREGATION WITH CUTTY
Incremental aggregation is the core functionality of our

sharing strategy. The main component that executes the
aggregation is the Cutty aggregator which consumes the en-
riched stream and pre-aggregates reactively. In the next
section, we present the discretizer which injects windowing
information into the data stream and then proceed with pre-
senting our shared aggregator.

5.1 Shared Discretization
The shared discretizer is able to multiplex multiple UDWs,

coming from multiple queries. The basic functionality of
the discretizer is to consult all the UDWs for each incoming
record, enrich it with the needed information and pass it
downstream to the aggregator.

Deterministic UDWs. As we have seen in Section 3.2, de-
terministic functions allow us to know whether a record be-
gins or ends a window, exactly at the moment of the record’s
arrival. This gives the discretizer the ability to give hints to
the aggregator, alleviating the aggregation process from the
need for window management and bookkeeping. Hence, the
aggregator simply operates on a marked stream, without any
knowledge about the specifics of the UDWs.

The discretizer associates a set of window begin/end iden-
tifiers with each incoming record. These identifiers are used
by the aggregator to apply slicing incrementally. Consider
for example the shared discretization of windows produced
by two UDWs as shown in the example in Figure 5. The

Figure 5: Mapping multiple UDWs to discretization events.

upper UDW has a range of 4 and slide 2 while the one in
the bottom has a range of 5 and slide 3. The dashed vertical
lines mark the begin of each individual window, as indicated
by the UDWs. The discretizer consults the UDWs and in-
jects “window begin” markers in the stream (as depicted on
the right). For instance, on record 0, there are two window
begins, namely windows 1 and 2. Similarly, the discretizer
consults the UDWs and enriches the stream with “window
end” markers. In our example, window 1 ends with record 3
(and indicated by the UDW upon processing record 4).

Formally, the discretizer injects window identifiers to the
data stream as follows:

r : T 7→ 〈r : T,WIDbegin ⊂ N,WIDend ⊂ N〉

where WIDbegin and WIDend are derived from the UDWs
and represent each unique window that, respectively, begins
(inclusively) or ends (exclusively) with record r.

Non-Deterministic UDWs. Non-deterministic windows
cannot indicate whether the current record of the stream be-
gins a new window. To this end, non-deterministic UDWs
have to indicate possibly expired records that should be re-
moved from the head of the current window, and notify
when the window has to be emitted. Since the shared dis-
cretizer operates on multiple UDWs at the same time, it
has to i) derive the records that expire across all UDWs i.e.,
the intersection of records that all UDWs have declared as
expired ii) store and track the begin of each active window.
Non-deterministic windows in our aggregator architecture
are handled by the underlying aggregate store as described
in [22]. For the lack of space, we will omit the details of how
expired records are handled by our aggregator, and refer the
reader to the original work.

5.2 Shared Aggregation
Efficient Aggregate Storage. The aggregator needs to
maintain partials in memory and retrieve them efficiently.
To this end, we designed an aggregate store that provides
support for range queries over the aggregates (e.g., when
multiple partials have to be combined for a window emis-
sion). The store supports three basic operations:
append(partial_id, partial): Adds a partial at the end
of the store where partial_id is an identifier for the pro-
vided partial.
merge(from, to): Computes result of P (s[from, to]). Most
of the time the aggregator is interested in looking up a full
aggregation starting by from. In that case, we will use the
shorthand call merge(from).
removeUpTo(partial_id): Removes all given partials from
the store up to partial_id.
We considered two evaluation strategies for the store, a lazy
using a circular fixed-sized array, and an eager which builds
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Algorithm 1 Agg 〈partial, 1A,⊕, lift, lower, store, begins〉
1: upon event 〈 ri,WIDbegin,WIDend〉 do
2: if WIDbegin 6= ∅ then
3: store.append(i, partial)
4: partial := 1A //reset partial
5: for each w ∈ WIDbegin

6: begins[w] = i //mark begin for w

7: for each w ∈ WIDend

8: start := begins[w] //retrieve begin of w
9: begins.remove(w)

10: store.removeUpTo(min(begins)) //gc
11: emit 〈w | lower(store.merge(start)⊕ partial) 〉;
12: partial := partial⊕ lift(ri) //online aggregation
13: end

on FlatFAT [22] a pre-allocated memory circular heap-based
data structure. For the rest of this section it should be
assumed that the store follows an eager strategy on a binary
tree unless stated otherwise. The complexity of storage and
retrieval plays a very important role in the performance of
our aggregation technique and is analyzed in Section 5.4.

Aggregating Enriched Streams. The functionality of
the Cutty aggregator is summarized in Algorithm 1. The ag-
gregator maintains a single active partial on which it applies
incremental aggregation per record arrival. Effectively this
is an execution of stream slicing, where each slice spreads be-
tween records that mark consecutive window begins. In case
a new window begins (which occurs when the set WIDbegin

is not empty) the aggregator has to start a new partial pre-
aggregation. In that case, the current active partial is stored
in the aggregates store and the active partial resets back to
its initial value (1A). In any other case the aggregator sim-
ply applies a single combine operation to update its active
partial. Mind that the aggregator keeps track of the first
record of every active window since it has to be aware of
the specific range to aggregate when a window ends. For
every window that ends in Wend, the aggregator combines
its active partial with the stored partial of the interval that
starts at the beginning of the window.

Storage Costs. A very important feature of Cutty aggre-
gation for deterministic UDWs is that it generates a mini-
mal amount of sliced partials needed for any shared window
computation. In the worst case, Cutty stores only as many
partials as the number of active windows, compared to other
slicing techniques [16] that generate twice as many partials.
The main idea lies at the observation that only windows that
end at a specified record ri would need to aggregate up to i.
Since no other windows would ever need to start or end at
this index later, incremental aggregation can continue until
it reaches a record which starts a new window.

For non-deterministic window aggregations, it is not pos-
sible to apply slicing due to the limited knowledge of the ac-
tive windows. However, in that case Cutty utilizes the store,
thus, bounding its performance to the current state-of-the-
art approach [22]. Expired record removals and full window
aggregates are executed based on the discretizer-injected in-
formation. Partial aggregation sharing is therefore achieved
only via the eager strategy of the aggregate store.

5.3 Sharing Across Multiple Queries
The slicing logic of Cutty applies for both single and

multiple multiplexed windows. To the best of our knowl-
edge, Cutty is the first general slicing technique that com-
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Figure 6: Incremental slicing for multiple queries which de-
fine windows over different measures.

bines deterministic windows defined on different metrics to
share sliced pre-aggregate. Using Cutty, all window begins
are mapped to a concrete record in the stream at runtime,
which is the first record of the window. It doesn’t mat-
ter which measures are used in the queries to define win-
dows; knowing at which records windows begin, allows us to
share pre-aggregates among them. Figure 6 illustrates how
slices are created when two queries use different measures,
namely time and distance. Imagine a vehicle which produces
a stream of reports consisting of the current timestamp
and mileage. We now define two periodic sliding window
queries, which can share pre-aggregates: i) Slide = 6sec.;
Range = 10sec. (depicted on x-axis) ii) Slide = 5km;
Range = 10km (depicted on y-axis). Note that, for the
sake of simplicity, the queries are periodic. However, Cutty
can apply slicing and sharing on any combination of deter-
ministic windows.

5.4 Aggregate Store Internals
The aggregate store is an extension of FlatFAT [22], which

we extended to support sharing partial aggregates among
multiple queries. As in FlatFAT, partials in our store are
stored in a pre-allocated heap-based data structure that is
pointer-less. The data structure resembles a “sliding binary
tree” that pre-computes high level aggregates incrementally.
In its circular heap space, single-hop tree traversals (e.g.
parent, rightChild) can be executed in O(1) time without the
need for look-ups. We briefly summarize all additions and
considerations in the store internals while omitting several
non-critical details that can be further studied in [22].

Multi-window Processing. Cutty takes care of generat-
ing shared partials, produced by slicing multiple determin-
istic windows accordingly, and then stores them by invoking
the append(partial_id, partial) operation. Stored par-
tials (as opposed to the records themselves in [22]) serve as
the leafs of the tree and are uniquely addressed by their orig-
inal id. To allow this we enriched the data structure with
additional mappings h(partialID) → i where i ∈ N is the
heap index for that partial. When required, the aggregator
has to look-up for aggregates on intervals within the partial
id space and retrieve them via a merge(from, to) opera-
tion. Both merge and append operations employ a bottom-
up heap traversal for pre-computing (merge) and evaluating
an aggregate range (append). The traversal yields an up-
per bound complexity of O(log2(n)) in both cases, where n
is the number of leafs. For Non-deterministic windows we
implement an identical strategy to RA [22], by appending
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Table 1: Complexities of Cutty and the state of the art over aggregating a periodic sliding window.

Space Update Merge
Lazy Eager Lazy Eager Eager (Amortized) Lazy Eager

Cutty dr/se+ 1 d2r/se+ 1 1 O(log(dr/se)) (log(dr/se)−1)/s + 1 dr/se+ 1 log(dae)
Pairs[16] d2r/se d4r/se 1 O(log(d2r/se)) 2(log(d2r/se)−1)/s + 1 d2r/se log(d2r/se)
Panes[17] dr/gcd(r,s)e d2r/gcd(r,s)e 1 O(log(dr/gdc(r,s)e)) log(dr/gdc(r,s)e) + gdc(r, s)− 1 dr/gcd(r,s)e log(dr/gcd(r,s)e)
RA [22] r 2r 1 O(log(r)) log(r) r log(r)

Figure 7: Slicing a count window of range 10 and slide 3.

every individual record to the data structure and applying
look-ups in the granularity of records.

Memory Management. When the heap space is fully uti-
lized upon an append operation, we double the array’s capac-
ity. This is a common strategy, also considered in the origi-
nal implementation of FlatFAT [22]. Similarly, when a re-

move operation leaves behind an under-utilized heap down to
a third of its full capacity, we half its capacity. Each storage
resize invokes exactly 2n + 1 heap operations. That means
that if we need to store x partials we would pre-allocate a
capacity n = 2k for k = min{m ∈ R|m ≥ log2(x)}.
Lazy Implementation. The aggregates store also imple-
ments a lazy aggregation mode. This means that, when op-
erating in this mode, no higher-order partials are precom-
puted. In this case, only first order partials are stored in
the circular buffer (corresponding to leafs in the eager strat-
egy). Thus, update and merge operations have O(1) and
O(n) complexities respectively for n partials. For simplic-
ity and comparability we preserved the same eager memory
management strategies that were explained above.

6. ANALYTICAL COMPARISON
So far we have introduced different window classes and

aggregation techniques for each class. In order to put ev-
erything into perspective we will examine worst case and
amortized spatial and computational complexities exhibited
by Cutty compared to other known techniques in aggregate
sharing.
Analysis Scope. We deliberately focus on a single peri-
odic window aggregation, with a fixed range r and slide s,
since this is the single common denominator of all supported
window classes. Our evaluation in Section 7 includes exper-
imental analysis of multi-window scenarios. We cover all
periodic window-centric pre-aggregation techniques, namely
panes [17] and pairs [16] and the state-of-the-art general
window aggregation techniques, B-Int [5] and RA [22].
Panes and Pairs. With periodic windows (constant range
and slide) it is possible to pre-define all sliced partials on
periodic intervals. Panes yields partials with a constant
size, equal to the greatest common denominator of range
and slide. Alternatively, pairs splits a slide into two partials:
p2 = range mod slide and p1 = slide − s2. Contrary to
panes, pairs can also incorporate multiple periodic windows.
We will examine the multi-query case further in practice
in Section 7. Figure 7 depicts all slices generated by each
technique for a periodic window of length 10 and slide 3.

General Techniques. General sharing techniques cover
window pre-aggregation cases with no periodicity assump-
tions. The main idea behind RA’s FlatFat [22] and B-Int [5]
is to maintain a binary tree of higher order partials that
“slides” together with the records of the stream. RA’s Flat-
FAT is an adaptation of B-Int on a fixed-size circular heap
with dynamic resizing support.

6.1 Complexity Analysis
Table 1 summarizes all complexities, covering worst case

memory demands in terms of number of stored partials, as
well as update (computation per record) and merge (compu-
tation per full window) in respect of reduce calls. We further
decouple slicing methods from aggregate store strategies, i.e.
eager and lazy. Evidently, general aggregation strategies
conceptually slice a data stream by producing a partial per
record. From the table it is clear that in all cases, the eager
strategy achieves better merge performance while increasing
memory and computational demands for updates. Further-
more, Cutty exhibits the most efficient execution both in
terms of space and computation. This is because slices in
Cutty solely correspond to the number of active windows
at any given time. Pairs, on the other hand, require dou-
ble the memory and computational resources as a side-effect
of slicing twice more partials. Panes is the least efficient
technique for periodic windows due to enforcing finer slicing
granularity which corresponds to the smallest possible slice
during a full window pre-aggregation. Finally, RA, as ex-
pected, has significantly more memory and computational
demands than periodic window pre-aggregation techniques
since it is agnostic of window semantics and thus, operates
at the granularity of each individual record.

6.2 Amortized Costs
An amortized study of the operation costs of all these

techniques with an eager strategy unveils further benefits
for Cutty. Intuitively, the worst case update complexity
in a full window aggregation applies only when a partial is
stored. In the case of Cutty this occurs exactly r/s times. In
contrast, pairs writes to the store 2r/s times while in panes
and RA this occurs exactly r/gcd(r,s) and r times, as depicted
in Table 1. Evidently, Cutty exhibits the lowest amortized
cost, by invoking costly store operations half of the times
compared to Pairs.

7. EXPERIMENTAL EVALUATION
In this section, we assess the performance of Cutty com-

pared to Pairs [16] and RA [5, 22] for periodic and non-
periodic windows.

7.1 Experiments Setup
Implementation and Competing Approaches. We im-
plemented the API for user-defined windows and the Cutty
aggregator on Apache Flink 0.9 [8]. In order to enable a
fair comparison, we implemented Pairs [16] and RA [22]
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Figure 8: Performance Evaluation for Periodic Queries with respect to different Workload Sizes.

within the same codebase, sharing data structures and func-
tion calls. More specifically, we implemented the following
techniques2, each of which maps to specific configurations
in our framework:

• Naive: The Naive aggregator does not exploit any win-
dow semantics (e.g. periodicity) nor sharing opportunities
for multiple windows. It simply recomputes overlapping
windows and runs a separate aggregator instance per win-
dow query. Thus, the amount of resources utilized is pro-
portional to the number of input queries.

• Cutty: The main strategy that is activated in our frame-
work for deterministic window functions. Unless stated
otherwise, Cutty uses an eager aggregate store, i.e., it
maintains a tree of partials as described in Section 5.4.

• Pairs [16]: Pairs is the state-of-the-art aggregate shar-
ing technique for periodic queries. Our implementation of
Pairs uses a lazy aggregate store strategy, as described in
the original paper.

• Pairs+: This is an enhanced version of the standard
Pairs technique that is configured with an eager aggre-
gate store enabling a fair comparison against Cutty.

• RA [22]: The Reactive Aggregator (RA) uses a general
incremental aggregation strategy [22] that employs no slic-
ing, relying solely on an eager aggregate store (FlatFAT).

Dataset. We used the DEBS12 grand challenge dataset [15]
which contains events generated by sensors of a factory.
Each record of the dataset comprises of energy metrics
and sensor states sampled with 100Hz rate. In total, the
dataset contains roughly 33 million events. Each event in-
cludes three energy measures and 54 binary sensor-state
transitions. We decided to use the DEBS12 dataset as it
serves very well to generate non-periodic session-based win-
dow queries using sensor transitions as punctuations for the
experiments which include deterministic/non-periodic win-
dows (Section 7.3).
2The Panes technique was excluded because i) it is general-
ized and subsumed by Pairs and ii) there is no support for
multiplexing multiple windows.

Hardware. We executed all experiments on a 4.0 GHz Intel
Core i7-4790K with 12GB DDR3 pre-allocated memory on
a v1.8.0 91 JVM. Note that the aggregation operator in our
experiments utilizes only a single core and is executed on a
single task within Apache Flink’s runtime.

7.2 Periodic Window Aggregation
Workload. In this experiment we focused on periodic win-
dows and generated a variable number of sliding count-based
windows on top of the DEBS12 dataset. We used a rolling
average of the three main energy measures as the aggrega-
tion function. We further generated queries of uniformly
random window ranges and slides. The range values were
selected within the range [20000;80000] and the slides within
[1000;20000]. Furthermore, slides and ranges were chosen to
be multiples of 10, thus, yielding 5000 possible unique range
and 1900 slide values. The resulting distribution of ranges
and slides is depicted in Figure 8a. In this setup, we created
11 workloads containing 1 to 100 queries.

Figure 8b depicts the total number of reduce calls which
were executed by each of the techniques throughout the
experiment (aggregating over ∼ 33M records) for different
workload sizes (1-100). Respectively, Figure 8c depicts the
maximum number of partials stored by each of the tech-
niques during the experiment (i.e., maximum memory al-
location). Note that the number of reduce calls correlates
to the throughput and the overall performance of the tech-
niques (we omit the graphs for the lack of space).

Benefits of Sharing. Aggregate sharing trades memory
resources for less computation. A first observation in Fig-
ure 8b is that RA yields computational gains only when
sharing more than 10 queries. This is because RA does not
perform slicing and invokes a store operation per record in
FlatFat. As mentioned earlier FlatFat operations yield ad-
ditional reduce calls. Besides RA, all other techniques seem
beneficial to use from a single query.

Performance Comparison. Cutty with an eager strat-
egy clearly offers the best performance results by requiring
an identical amount of memory to the Pairs technique (the
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Figure 9: Computational and Memory Comparisons between Cutty and RA for Multiplexing Non-periodic Queries

two techniques coincide in Figure 8c) while achieving nearly
half the amount of reduce calls compared to Pairs+ (Fig-
ure 8b). RA on the other hand, over-utilizes memory while
also incurring heavy computational load, over three degrees
of magnitude higher than Cutty (eager) and Pairs+.

Eager vs. Lazy Store. Throughout this paper Cutty as-
sumed an eager aggregate store as described in Section 5.
The cost trade-offs depicted in Figure 8b and Figure 8c val-
idate this decision. We can observe that both in the case
of Cutty and Pairs+ the eager strategy trades off exactly
and constantly twice the memory requirements to gain more
than an order of magnitude less overall reduce calls. The
computational gain becomes more significant when sharing
large amounts of overlapping window aggregates. Since the
memory overhead is very small (in the orders of hundreds),
for the rest of this analysis we will only focus on the perfor-
mance of the eager storage strategy for Cutty and Pairs+
(RA already relies on eager pre-aggregation).

Throughput Overview. In Figure 8d we compare the
throughput of Cutty, Pairs+ and RA for the same work-
loads. As expected, throughput degrades for larger work-
loads in Cutty and Pairs+ since more windows yield a larger
amount of partials and final aggregations to execute. How-
ever, 100x more queries yield only a degradation of 5-6x for
both, Cutty and Pairs+. In the case of RA, throughput
is always at a minimum even for small workloads (1 or 10
queries). The reasons behind this are covered below.

Insights on Computational Overhead. As shown in
Figure 8g, we further decompose reduce calls occurred in
the aggregator for Cutty (Figure 8e), Pairs+ (Figure 8f) and
RA for the same workloads. The calls attributed to update

summarize the cost and frequency of the append operation
(and associated aggregate store operations), while the merge
part of the calls summarizes the overall overhead caused
by final window aggregation, i.e. merge calls. In the case
of Cutty, the merge operations attribute to the majority
of the aggregation costs, while update costs are kept at a
minimum. On the other hand, Pairs+ incur nearly twice
the number of pre-aggregation calls compared to Cutty with
update operations dominating (compared to merge related
calls) as the number of queries increases. RA’s operation
seems to be overly dominated by pre-aggregation calls. This
is because RA does not differentiate window specifics and
eagerly stores each record to its aggregation store resulting
into a log(n) additional cost per record, for a significantly
larger n compared to Cutty and Pairs+. Finally, Figure 8h
shows that slicing in Pairs+ results into double the overall
amount of partials compared to Cutty. That clearly explains
the higher computational costs of Pairs+, since twice more
partials yield twice more frequent updates at the store.

Experiment Summary. Cutty exhibits the highest
throughput by at least 2x compared to Pairs+ and nearly
half the number of reduce calls compared to Pairs+. Fur-
thermore, it has a computational cost at least three or-
ders of magnitude lower than RA, the best known general
pre-aggregation technique. The proportions of these results
also align with our analytical comparison, described in Sec-
tion 6. Concluding, Cutty is the aggregate sharing technique
with the least cost for periodic queries both in theory and
in practice.

7.3 Non-Periodic Window Aggregation
Workload. The DEBS12 dataset [15] consists of arbitrary
binary sensor state transitions (true/false) that, in essence,
can serve to pinpoint different sessions (i.e. 1 from 0 or
0 from 1 opens a new session). Since the actual dataset
had only 20 active sensors (and 34 which seldom changed
state) we implemented UDWs that simulated session win-
dows, picked at random from the same distribution as the
frequency of the 20 active sensor state transitions (summa-
rized in Figure 9a). This type of dynamic windows is funda-
mentally non-periodic (but deterministic) and thus, we only
included Cutty and RA in this experiment.

Performance Comparison. In Figure 9b we can see that
the throughput of RA is already several orders of magnitude
lower than Cutty, starting from a single query. Since in this
scenario the windows are not sliding, the impact of addi-
tional windows is more clear. Memory utilization (Figure 9c)
follows similar trends that we have seen in the previous ex-
periment with periodic queries. Additionally, in Figure 9d
we can see a drill down of the computational costs of both
Cutty and RA. As before, the overall computational differ-
ence is around three orders of magnitude. We can further
observe though, that the number of merge related calls in
RA are similar to the one of Cutty’s update and merge re-
lated reduce calls. Still, merge calls in this scenario were
significantly higher than in the previous case with periodic
queries since session windows could be smaller and thus,
trigger full window computations more frequently.

Experiment Summary. The performance results of Cutty
for non-periodic, deterministic windows highlight the core
benefit of slicing, when it is applicable. To the best of our
knowledge, Cutty is the first technique that can apply slicing
in non-periodic, deterministic windows while doing so with
a higher efficiency and better performance than state-of-the-
art slicing techniques for periodic windows. However, it is
fair to note here that RA can be used in more general cases
(e.g., out of order eviction of window items), not only for
deterministic UDWs.
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8. RELATED WORK
Panes, Pairs, and RA. Pairs [16] improved upon Panes [17]
by reducing the number of slices per query and by extending
Panes’ ideas to multi-query aggregation. However i) Pairs
itself fails to scale to large numbers of queries with diverse
range and slide sizes. ii) Unlike Cutty, Pairs limits the query
scope to periodic windows. iii) Cutty perfoms better than
both Pairs and Panes theoretically and experimentally . Fi-
nally, RA [5, 22] applies to non-periodic windows but with
a large memory cost in order keep all individual elements
of the data stream in a tree structure. In contrast, Cutty
can apply slicing for the class of deterministic non-periodic
windows with much less computational and memory cost.

Other Approaches. Li et al. [18, 19] did cot consider slic-
ing techniques, but briefly classified window types by their
evaluation context requirements, leaving the characteriza-
tion of each class as an open research question. Our work
partly fills this gap: deterministic discretization functions
subsume all forward-context-free windows (no future records
are required to know when a window starts), while non-
deterministic discretization functions are forward-context-
aware. Several heuristic-based plan optimisers have been
proposed (Weave Shared [12], TriWeave[13]) to overcome
limitations in the context of periodic time queries dynami-
cally using runtime metrics (i.e. input rate and shared ag-
gregate rate). We consider this work complimentary to ours,
since our technique focuses on improving further single oper-
ator aggregation sharing. Thus, such optimisations can also
be used to group multiple queries in a selection aggregators
that execute Cutty instead.

9. CONCLUSIONS AND FUTURE WORK
In this paper we considered the efficient sharing of par-

tial aggregates across a very broad range of windows, spec-
ified as user-defined functions (UDFs). We based our ag-
gregate sharing technique on the observation that slicing
can be performed simply by knowing the begins of windows,
alleviating the need for complete knowledge of the seman-
tics of the windows being aggregated. We defined a class
of UDWs named deterministic, for which aggregate sharing
can be performed efficiently. Moreover, multiple queries of
different window semantics can share aggregates. We im-
plemented our techniques on Apache Flink, and performed
experiments demonstrating orders of magnitude of reduction
in aggregation costs compared to the state of the art.

Future Work. The first version of UDWs presented in this
paper has been contributed to Apache Flink v0.9 and has
been in wide use for almost a year. We plan to add support
for out-of-order window aggregations and comply with the
bucket-per-window model [18] that Google Dataflow [3] and
Apache Flink have recently adopted among others.
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